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7 NON-PARAMETRIC STATISTICS 

7.1 ANDERSON - DARLING TEST: The Anderson–Darling test is a statistical 

test of whether a given sample of data is drawn from a given probability 

distribution. In its basic form, the test assumes that there are no parameters to be 

estimated in the distribution being tested, in which case the test and its set 

of critical values is distribution-free. However, the test is most often used in 

contexts where a family of distributions is being tested, in which case the 

parameters of that family need to be estimated and account must be taken of this in 

adjusting either the test-statistic or its critical values. When applied to testing if 

a normal distribution adequately describes a set of data, it is one of the most 

powerful statistical tools for detecting most departures from normality. K-sample 

Anderson–Darling tests are available for testing whether several collections of 

observations can be modeled as coming from a single population, where 

the distribution function does not have to be specified. 

In addition to its use as a test of fit for distributions, it can be used in parameter 

estimation as the basis for a form of minimum distance estimation procedure. 

The test is named after Theodore Wilbur Anderson (born 1918) and Donald A. 

Darling (born 1915), who invented it in 1952.  

The Anderson-Darling test for normality is one of three general normality tests 

designed to detect all departures from normality.  While it is sometimes touted as 

the most powerful test, no one test is best against all alternatives and the other 2 

tests are of comparable power.  The p-values given by Distribution Analyzer for 

this test may differ slightly from those given in other software packages as they 

have been corrected to be accurate to 3 significant digits. 

 

The test rejects the hypothesis of normality when the p-value is less than or equal 

to 0.05.  Failing the normality test allows you to state with 95% confidence the 

data does not fit the normal distribution.  Passing the normality test only allows 

you to state no significant departure from normality was found. 

 

The Anderson-Darling test, while having excellent theoretical properties, has a 

serious flaw when applied to real world data.  The Anderson-Darling test is 

severely affected by ties in the data due to poor precision.  When a significant 

number of ties exist, the Anderson-Darling will frequently reject the data as non-

normal, regardless of how well the data fits the normal distribution.  Below is an 

example of data generated from the normal distribution but rounded to the nearest 

0.5 to create ties.  A tie is when identical values occurs more than once in the data 

set.  
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7.2 COHEN'S KAPPA COEFFICIENT: Cohen's kappa coefficient is 

a statistical measure of inter-rater agreement or inter-annotator agreement for 

qualitative (categorical) items. It is generally thought to be a more robust measure 

than simple percent agreement calculation since κ takes into account the agreement 

occurring by chance. Some researchers have expressed concern over κ's tendency 

to take the observed categories' frequencies as givens, which can have the effect of 

underestimating agreement for a category that is also commonly used; for this 

reason, κ is considered an overly conservative measure of agreement. 

Others contest the assertion that kappa "takes into account" chance agreement. To 

do this effectively would require an explicit model of how chance affects rater 

decisions. The so-called chance adjustment of kappa statistics supposes that, when 

not completely certain, raters simply guess—a very unrealistic scenario. 

 

A case sometimes considered to be a problem with Cohen's Kappa occurs when 

comparing the Kappa calculated for two pairs of raters with the two raters in each 

pair having the same percentage agreement but one pair give a similar number of 

ratings while the other pair give a very different number of ratings. 

STATISTICAL SIGNIFICANCE makes no claim on how important is the 

magnitude in a given application or what is considered as high or low agreement. 

Statistical significance for kappa is rarely reported, probably because even 

relatively low values of kappa can nonetheless be significantly different from zero 

but not of sufficient magnitude to satisfy investigators. Still, its standard error has 

been described and is computed by various computer programs.  

If statistical significance is not a useful guide, what magnitude of kappa reflects 

adequate agreement? Guidelines would be helpful, but factors other than 

agreement can influence its magnitude, which makes interpretation of a given 

magnitude problematic. As Sim and Wright noted, two important factors are 

prevalence (are the codes equiprobable or do their probabilities vary) and bias (are 

the marginal probabilities for the two observers similar or different). Other things 

being equal, kappas are higher when codes are equiprobable. On the other hand 

Kappas are higher when codes are distributed asymmetrically by the two 

observers. In contrast to probability variations, the effect of bias is greater when 

Kappa is small than when it is large. 

Another factor is the number of codes. As number of codes increases, kappas 

become higher. Based on a simulation study, Bakeman and colleagues concluded 
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that for fallible observers, values for kappa were lower when codes were fewer. 

And, in agreement with Sim & Wrights's statement concerning prevalence, kappas 

were higher when codes were roughly equiprobable. Thus Bakeman et al. 

concluded that "no one value of kappa can be regarded as universally 

acceptable."They also provide a computer program that lets users compute values 

for kappa specifying number of codes, their probability, and observer accuracy. 

For example, given equiprobable codes and observers who are 85% accurate, value 

of kappa are 0.49, 0.60, 0.66, and 0.69 when number of codes is 2, 3, 5, and 10, 

respectively. 

Nonetheless, magnitude guidelines have appeared in the literature. Perhaps the first 

was Landis and Koch, who characterized values < 0 as indicating no agreement 

and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as 

substantial, and 0.81–1 as almost perfect agreement. This set of guidelines is 

however by no means universally accepted; Landis and Koch supplied no evidence 

to support it, basing it instead on personal opinion. It has been noted that these 

guidelines may be more harmful than helpful. Fleiss's equally arbitrary guidelines 

characterize kappas over 0.75 as excellent, 0.40 to 0.75 as fair to good, and below 

0.40 as poor. 

 

7.3. TEST OF FRIEDMAN: The Friedman test is a non-parametric statistical 

test developed by the U.S. economist Milton Friedman. Similar to 

the parametric repeated measures ANOVA, it is used to detect differences in 

treatments across multiple test attempts. The procedure involves ranking each row 

(or block) together, then considering the values of ranks by columns. Applicable 

to complete block designs, it is thus a special case of the Durbin test. 

Classic examples of use are: 

 n wine judges each rate k different wines. Are any wines ranked consistently 

higher or lower than the others? 

 n wines are each rated by k different judges. Are the judges' ratings consistent 

with each other? 

 n welders each use k welding torches, and the ensuing welds were rated on 

quality. Do any of the torches produce consistently better or worse welds? 

The Friedman test is used for one-way repeated measures analysis of variance by 

ranks. In its use of ranks it is similar to the Kruskal-Wallis one-way analysis of 

variance by ranks. 

Friedman test is widely supported by many statistical software packages. 
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7.4. TEST OF KOLMOGOROV – SMIRNOV: In statistics, the Kolmogorov–

Smirnov test (K–S test) is a nonparametric test of the equality of continuous, one-

dimensional probability distributions that can be used to compare a sample with a 

reference probability distribution (one-sample K–S test), or to compare two 

samples (two-sample K–S test). The Kolmogorov–Smirnov statistic quantifies 

a distance between the empirical distribution function of the sample and 

the cumulative distribution function of the reference distribution, or between the 

empirical distribution functions of two samples. The null distribution of this 

statistic is calculated under the null hypothesis that the samples are drawn from the 

same distribution (in the two-sample case) or that the sample is drawn from the 

reference distribution (in the one-sample case). In each case, the distributions 

considered under the null hypothesis are continuous distributions but are otherwise 

unrestricted. 

The two-sample K–S test is one of the most useful and general nonparametric 

methods for comparing two samples, as it is sensitive to differences in both 

location and shape of the empirical cumulative distribution functions of the two 

samples. 

The Kolmogorov–Smirnov test can be modified to serve as a goodness of fit test. 

In the special case of testing for normality of the distribution, samples are 

standardized and compared with a standard normal distribution. This is equivalent 

to setting the mean and variance of the reference distribution equal to the sample 

estimates, and it is known that using these to define the specific reference 

distribution changes the null distribution of the test statistic: see below. Various 

studies have found that, even in this corrected form, the test is less powerful for 

testing normality than the Shapiro–Wilk test or Anderson–Darling test. However, 

other tests have their own disadvantages. For instance the Shapiro-Wilk test is 

known not to work well with many ties (many identical values) 

 

7.5.TEST OF KRUSKAL – WALLIS: The Kruskal–Wallis one-way analysis 

of variance by ranks (named after William Kruskal and W. Allen Wallis) is a non-

parametric method for testing whether samples originate from the same 

distribution. It is used for comparing more than two samples that are independent, 

or not related. The parametric equivalent of the Kruskal-Wallis test is the one-way 

analysis of variance(ANOVA). When the Kruskal-Wallis test leads to significant 

results, then at least one of the samples is different from the other samples. The test 

does not identify where the differences occur or how many differences actually 

occur. It is an extension of the Mann–Whitney U test to 3 or more groups. The 
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Mann-Whitney would help analyze the specific sample pairs for significant 

differences. 

Since it is a non-parametric method, the Kruskal–Wallis test does not assume 

a normal distribution of the residuals, unlike the analogous one-way analysis of 

variance. However, the test does assume an identically shaped and scaled 

distribution for each group, except for any difference in medians. 

 

7.6. TEST OF MANN-WHITNEY: n statistics, the Mann–Whitney U test (also 

called the Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, 

or Wilcoxon–Mann–Whitney test) is a nonparametric test of thenull 

hypothesis that two populations are the same against an alternative hypothesis, 

especially that a particular population tends to have larger values than the other. 

It has greater efficiency than the t-test on non-normal distributions, such as 

a mixture of normal distributions, and it is nearly as efficient as the t-test on 

normal distributions. 

The Wilcoxon rank-sum test is not the same as the Wilcoxon signed-rank test, 

although both are nonparametric and involve summation of ranks. 

 

7.7. THE MEDIAN TEST: In statistics, Mood's median test is a special case 

of Pearson's chi-squared test. It is a nonparametric test that tests the null 

hypothesis that the medians of the populations from which two or 

more samples are drawn are identical. The data in each sample are assigned to two 

groups, one consisting of data whose values are higher than the median value in the 

two groups combined, and the other consisting of data whose values are at the 

median or below. A Pearson's chi-squared test is then used to determine whether 

the observed frequencies in each sample differ from expected frequencies derived 

from a distribution combining the two groups. 

 

7.8 SPEARMAN'S RANK CORRELATION COEFFICIENT: 

In statistics, Spearman's rank correlation coefficient or Spearman's rho, named 

after Charles Spearman and often denoted by the Greek letter  (rho) or as , is 

a nonparametric measure of statistical dependence between two variables. It 

assesses how well the relationship between two variables can be described using 

a monotonic function. If there are no repeated data values, a perfect Spearman 

correlation of +1 or −1 occurs when each of the variables is a perfect monotone 

function of the other. 
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Spearman's coefficient, like any correlation calculation, is appropriate for 

both continuous and discrete variables, including ordinalvariables 

 

 

7.9 WILCOXON SIGNED RANKS TEST: The Wilcoxon signed-rank test is 

a non-parametric statistical hypothesis test used when comparing two related 

samples, matched samples, or repeated measurements on a single sample to assess 

whether their population mean ranks differ (i.e. it is a paired difference test). It can 

be used as an alternative to the paired Student's t-test, t-test for matched pairs, or 

the t-test for dependent samples when the population cannot be assumed to 

be normally distributed.  

The Wilcoxon signed-rank test is not the same as the Wilcoxon rank-sum test, 

although both are nonparametric and involve summation of ranks. 

 

The test is named for Frank Wilcoxon (1892–1965) who, in a single paper, 

proposed both it and the rank-sum test for two independent samples (Wilcoxon, 

1945). The test was popularized by Siegel (1956) in his influential text book on 

non-parametric statistics. Siegel used the symbol T for a value related to, but not 

the same as, . In consequence, the test is sometimes referred to as 

the Wilcoxon T test, and the test statistic is reported as a value of T. 

 

Assumptions 

1. Data are paired and come from the same population. 

2. Each pair is chosen randomly and independently. 

3. The data are measured at least on an ordinal scale, but need not be normal. 
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